Atrial Fibrillation detection in primary care settings in south east London: An evaluation

June 2025

healthinnovationnetwork.com

Contents

Contents	2
Executive Summary	3
Acknowledgements	4
Introduction	5
Intervention description	5
Methodology	8
Evaluation objectives	8
Evaluation design	8
Results	9
Training webinars	9
Atrial Fibrillation detection: Analysis of impact	9
Discussion and Recommendations	15
Discussion	15
Recommendations	16
References	17
Appendix	18
Healthcare Professionals' Questionnaire	18
Patient Case Studies	20

Executive Summary

Atrial Fibrillation (AF) is a relatively common condition affecting around 1.4 million people in the UK. However, many people are living with the condition without knowing it. Undiagnosed AF can lead to serious health consequences if left undetected and untreated. This report presents findings from a pilot project on the detection of AF in patients using a handheld device, called MyDiagnostick, in primary care settings. The objectives of this evaluation were to:

- Understand the impact of the project on AF detection, including reach and breakdown of gender and age of participating patients.
- Understand the experience of primary care clinicians taking part in the project.
- Assess what worked well in delivery, and why.
- Understand the challenges and learning from delivery of this project.

A total of 247 devices were distributed to almost all primary care practices and some community sites across all 6 boroughs of southeast London. Severe delays were encountered throughout this phase of the project due to completion of the Data Protection Impact Assessment (DPIA), a shortage of devices in the country, and key members of this project team leaving the project. In most cases, project sites did not receive their device until 7 months after the initial webinar which launched the project.

Four online education and training webinars and 2 communities of practice webinars were delivered throughout the project, covering topics including AF detection, the patient pathway, management of AF and treatments for AF, along with an instructional webinar on how to use the MyDiagnostick device.

There was a total of 864 interventions recorded across 51 sites using the MyDiagnostick device throughout the course of the project. Of the 864 patients tested, 42 registered an abnormal heart rhythm (4.9%). Among the 42 patients recording an abnormal heart rhythm, 9 (21.4%) were referred for further investigation with a 12-lead ECG. At least 1 of these patients is known to have gone on to receive confirmation of an AF diagnosis and is currently taking anticoagulant treatment.

Forty-nine healthcare professionals (HCPs) who took part in delivery of the project were sent an email with a link to an online questionnaire. Feedback was received from 10 HCPs (20.4%) and 3 of them attended a focus group to explore some issues further. HCPs said they were confident with how to use the device to detect AF, they understood the patient pathway and they reported patients appreciating having the AF check and liking the device. Challenges mainly related to the delay from project launch to receipt of the device, IT problems using the device and how to sustain integration of the device into routine practice. Despite the many challenges to implementing the project as intended, the project was considered acceptable and feasible by some HCPs in primary care settings.

Acknowledgements

This project entitled Atrial Fibrillation Detection in Primary Care Settings in Southeast London was funded by South East London Integrated Care Board and a non-conditional grant from Daiichi-Sankyo Company as part of the Detect, Protect, Perfect project with NHS England. The Health Innovation Network South London was commissioned by South East London Integrated Care Board to evaluate the project.

The South East London Integrated Care Board team comprised: Helen Williams, Consultant Pharmacist for Cardiovascular Disease Sophie Bhandary, Lead Pharmacist

The Health Innovation Network South London team comprised:
Sally Irwin, Project Manager, Long Term Conditions Team
Rod Watson, Senior Project Manager, Long Term Conditions Team
Polly Sinclair, Lead Analyst, Informatics Team

South East London Integrated Care Board and the Health Innovation Network South London would like to thank all of the clinicians and patients for taking part in this pilot project.

Introduction

Atrial Fibrillation (AF) is the most common sustained cardiac arrhythmia and is a leading cause of stroke, heart failure, and reduced quality of life. It is estimated to affect approximately 2% of the UK adult population (1). AF has been called a 'silent' disease, as many people may not experience any symptoms, despite the heart beating irregularly. Left untreated, AF can be a significant risk factor for stroke. As a person ages, their risk of AF increases and there is a 1 in 4 risk of developing AF after the age of 40 years (2). The NHS Long Term Plan (3) states that where 100 people are identified and receive anticoagulation medication, an average of 4 strokes are averted, preventing serious disability or even death. Early detection and effective management of AF are critical to preventing serious complications.

The number of cases of AF in southeast London has grown following reduced face to face appointments during the COVID-19 pandemic. Data from 2020 indicated there were potentially 12,119 people in southeast London with undiagnosed AF (4). Prevalence of GP recorded AF in southeast London to December 2024 was 1.48% compared to an England average of 2.58% (5), indicating a greater proportion of undiagnosed people in southeast London.

To address this disparity, this project was piloted. It supports the Detect, Protect, Perfect approach to management of Atrial Fibrillation by providing AF detection devices in primary care settings in southeast London, as well as supporting the development of new pathways for AF detection, onward referral, AF management and safe and effective administration of anticoagulation drug therapy. This project promoted this strategy while also supporting clinicians in primary care settings to manage any identified AF cases. It was coupled with training for health care professionals in primary care across southeast London to aid in the detection and management of AF, to improve care, and to encourage safe and effective anticoagulation where appropriate.


Intervention description

Information about this project, along with an invitation to take part, was communicated to primary care network (PCN) leads and a number of community-based health services across southeast London. The offer was a hand-held AF detection device, called MyDiagnostick, given to every GP practice within SEL, along with training on the use of this device, AF detection and management. PCNs were incentivised with £500 to provide 1 nominated person per PCN to be the main contact point with SEL ICB and the HIN and to oversee this project for the PCN. Participation in the project also came with an obligation to record all MyDiagnostick interventions on a designated spreadsheet or the Arden's template, and to return this de-identified data to the evaluation manager for evaluation purposes.

MyDiagnostick is a handheld medical device designed for the rapid detection of AF. Shaped like a baton with metallic handles at both ends, it allows users to record a single-lead electrocardiogram (ECG) by simply holding the device with both hands for 60 seconds. At the end of the recording, the device provides immediate feedback via either:

- A green tick indicating a normal heart rhythm.
- A red cross indicating an abnormal heart rhythm (possible AF).

The device can store up to 140 ECG recordings which are accessible via a USB connection to a healthcare professional's (HCP) computer. Diagnostic accuracy using MyDiagnostick is extremely high, with both good sensitivity and specificity for detecting AF in primary care settings.

Figures 1-3: Depictions of the MyDiagnostick device (6)

Clinical Effectiveness South East London's (CESEL) Guide to Atrial Fibrillation (7) was used in the project's Standard Operating Procedures document was sent to all participating sites and discussion of it was included in one of the training webinars. The patient pathway is reproduced below.

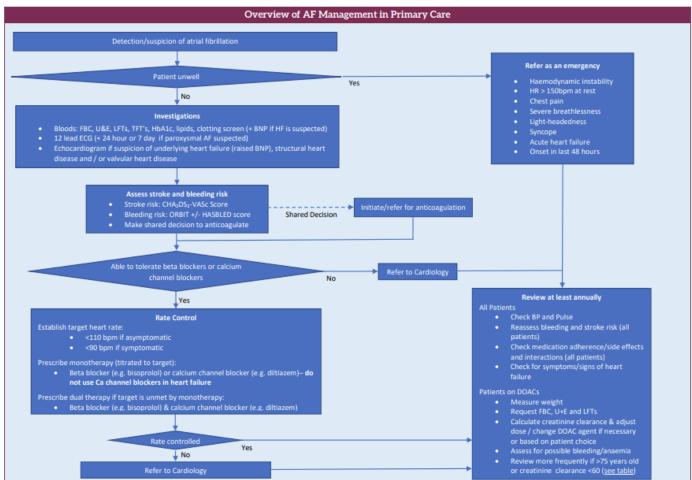


Figure 4: Overview of AF Management in Primary Care, Clinical Effectiveness South East London, 2024

Sign-up to the project by PCNs and community sites commenced in early 2024 and funding for participating in the project was released to sites in the 2023-24 financial year. The first of 6 webinars took place on 20 February 2024

which launched the project. Delivery of the 247 MyDiagnostick devices was expected to happen in February 2024. However, delivery of the devices was delayed due to a number of factors. Numed is the UK supplier of MyDiagnostick devices and they consulted directly with the device manufacturer. However, before the order could be made, a Data Protection Impact Assessment (DPIA) needed to be completed. The completion of the DPIA took several more months than was anticipated; primarily due to South East London Integrated Care Board (SEL ICB) undergoing a re-structure at the time. SEL ICB staff key to the project left the organisation around this period. After the DPIA was completed, the contract between Numed and SEL ICB could then be signed, and an order of 247 devices submitted. Numed ordered devices from the manufacturer in April 2024, with the first delivery to PCN and community sites planned for July 2024. However, at this point in time, there was a delay in delivery from the manufacturer (in The Netherlands) to Numed. This added further delays to this project and the devices were not delivered to project sites until September 2024; seven months later than expected.

South East London Integrated Care Board's Information Technology team agreed to remotely deploy the software to PCN sites' computers and provide trouble shooting support. For community sites, instructions for how to download the device software onto HCP computers was provided in the Standard Operating Procedure document and also during the webinars.

Four clinical webinars relating to AF, its management and treatment, and 2 Community of Practice webinars to share good practice and learning arising from the project took place throughout the year. A webpage hosted on the HIN's website comprised a range of project resources to support clinicians, including recordings of the 6 webinars, Standard Operating Procedures, information about MyDiagnostick and FAQs covering all aspects of the project.

Prospective project modelling estimated use of the MyDiagnostick device with 1 patient per week, per practice/setting over a 3-month period would reach 2,964 patient contacts. Research findings (9, 10) suggest that a 4% detection rate is a reasonable estimate for an AF detection programme targeting older adults, particularly those aged 65 years and over.

Methodology

Evaluation objectives

The objectives of this evaluation were to:

- Understand the impact of the project on AF detection, including reach and breakdown of gender and age of participating patients.
- Understand the experience of primary care clinicians taking part in the project.
- Assess what worked well in delivery, and why.
- Understand the challenges and learning from delivery of this project.

Evaluation design

A pragmatic, real-world evaluation was implemented to understand the effectiveness of the intervention in real-life settings. This evaluation used a mixed-methods approach to address the objectives. The evaluation design is outlined in Figure 5, below.

Evaluation objectives		Metrics	Data collection methods	Analysis	
1.	Understand the impact of the project on AF detection.	 Number of patients tested. Number of possible AF cases detected. Number of referrals. 	Site-based project monitoring sheet.	 Descriptive analysis of each metric. Cases identified-linked to high priority groups e.g. 65 years+. Comparative analysis. 	
2.	Understand the experience of primary care clinicians taking part in the project.	 Qualitative feedback from practice staff. Survey metrics: e.g., satisfaction, usability of devices, clarity of patient pathway. 	Online questionnaire.HCP focus group.	 Descriptive survey analysis. Thematic analysis of qualitative feedback. 	
3.	Assess what worked well in delivery, and why.	 Qualitative feedback from practice staff. Survey metrics. 	Online questionnaire.HCP focus group.	 Descriptive survey analysis. Thematic analysis of qualitative feedback. 	
4.	Understand the challenges and learning from delivery of this project.	 Qualitative feedback from practice staff Survey metrics. 	Online questionnaire.HCP focus group.	 Descriptive survey analysis. Thematic analysis of qualitative feedback. 	

Figure 5: Evaluation design

All PCN project leads, and community site leads were emailed an invitation to take part in the evaluation by clicking on a link in the email to an online questionnaire. A copy of the HCP's questionnaire can be found in the Appendix.

Recruitment to the HCP focus group was drawn from participants who completed the online questionnaire.

Results

In total, 247 MyDiagnostick devices were purchased for this project and distributed to 188 primary care surgeries and 14 community sites across 34 of 36 PCNs and covering all 6 boroughs of southeast London.

Training webinars

Four clinical training webinars and 2 community of practice webinars were held throughout the duration of the project.

Table 1: Title, date and attendance figures for the 6 project webinars

Tra	ining Webinar Title	Date held	No of people attending			
1.	Atrial Fibrillation Management	20 February 2024	97			
2.	MyDiagnostick Device & Software	25 April 2024	96			
3.	Atrial Fibrillation Detection: Actioning Results	18 June 2024	64			
4.	Atrial Fibrillation & Anticoagulation	22 October 2024	33			
Co	Community of Practice Title					
5.	Sharing of Learning So Far	2 October 2024	20			
6.	Update & Experiences So Far	19 February 2025	39			

Some decreasing attendance figures occurred over the course of the project. However, the second Community of Practice webinar had almost double the number of attendees compared to the first one, 4 months earlier.

Atrial Fibrillation detection: Analysis of impact

A total of 51 sites (49 primary care practices and 2 community sites), out of the initial 202 sites that signed up, made use of the devices and submitted their results for this evaluation. This equates to an overall uptake level of 25.2% (table 2). Reasons for not using the devices or recording the results are explored in the discussion.

Table 2: Percentage of participating sites submitting results

Borough	No of practices/ community sites submitting results	No of practices/ community sites taking part in pilot	% of participating sites that submitted results
Bexley	2	7	28.6%
Bromley	18	43	41.9%
Greenwich	10	30	33.3%
Lambeth	12	40	30.0%
Lewisham	1	36	2.8%
Southwark	8	46	17.4%
Total	51	202	25.2%

When looking at usage by PCN for the GP practices that participated there was a wide range of usage with Blackheath and Charlton PCN using the devices 161 times compared to a number of PCNs that only used the devices once during the pilot period (Figure 6).

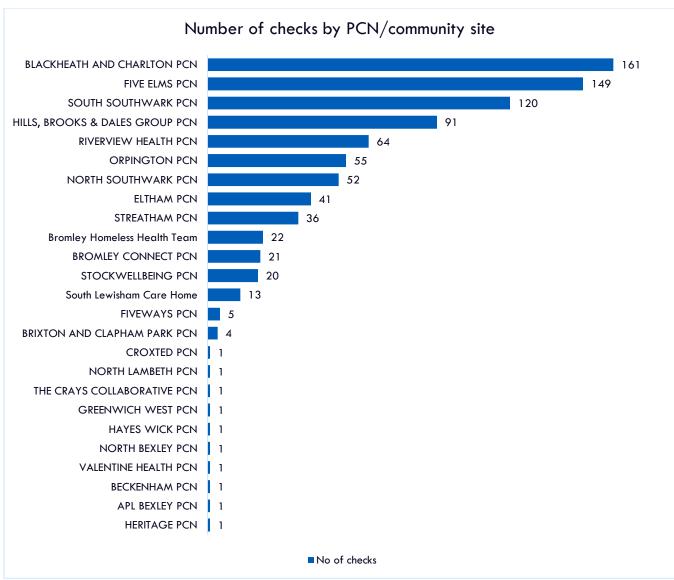


Figure 6: Number of AF checks using MyDiagnostick by PCN/ community site

There was a total of 864 interventions recorded using the MyDiagnostick device throughout the course of the project. Of the 864 patients tested, 42 registered an abnormal heart rhythm (4.9%).

Among the 42 patients recording an abnormal heart rhythm, there were 9 (21.4%) referrals for further investigation with a 12-lead ECG recorded on the project's evaluation form. It is unknown whether the remaining 33 patients were also referred, as this information was not recorded on the evaluation form, or they were not referred for other reasons.

These results are presented by way of a flow diagram in Figure 7.



Figure 7

Fourteen PCNs/ community sites detected at least one patient with an abnormal heart rhythm, with 6 of these PCNs/sites making at least one onward referral for further investigation and possible AF diagnosis (Figure 8).

No of abnormal results by PCN/Community Site

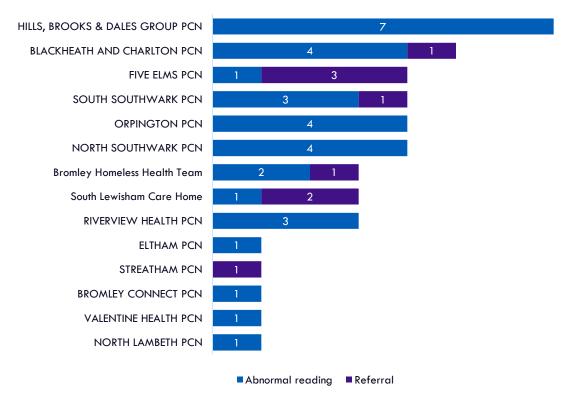


Figure 8: Number of abnormal results by PCN/ community site

As shown in Figure 9 below, of the 42 patients who had an abnormal heart rhythm detected, age and gender data are available on 33 patients. Twenty (60.6%) patients were male and 13 (34.4%) were female. The majority of those detected were aged 60 or over (87.9%).

Age and Gender of those with abnormal heart rhythm detected

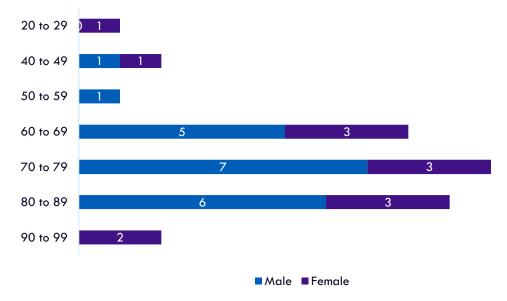


Figure 9: Age and gender of those with abnormal heart rhythm detected

Note: Figure 9 is based on 33 patients that had an abnormal heart rhythm detected where their age band and gender were recorded. There were 9 patients with an abnormal heart rhythm detected who did not have information on their age band or gender.

Feedback from Healthcare Professionals

Two methods of qualitative data collection were employed targeting HCPs who participated in the project, and these are considered separately.

HCP Survey

An email with a link to the online questionnaire was sent to 49 HCPs and a total of 10 responses were received (20.4%). Four responses were received from HCPs in Lambeth, 3 from Bromley, 2 from Southwark and 1 from Greenwich. Collated responses to all of the questions can be found in Table 3, below.

Table 3: Collated responses to the HCP online survey, n=10

Question	Disagree (%)	Neither agree/ disagree (%)	Agree (%)	Total (%)
Patients found the MyDiagnostick device easy to use.	10	10	80	100
I am confident with how to use MyDiagnostick to detect AF	10	10	80	100
I understand the patient pathway when AF is detected using MyDiagnostick.	10	10	80	100
Training on AF during the project increased my knowledge of AF detection.	20	20	60	100
Webinars and resources on use of MyDiagnostick gave me sufficient knowledge to deliver the project.	20	20	60	100
AF checks have been integrated into routine practice.	20	30	50	100
AF checks using MyDiagnostick have been integrated into routine practice.	20	30	50	100

A large majority of respondents (80%) said their patients found the MyDiagnostick device easy to use. Respondents also said they were confident with how to use the device to detect AF, and they understood the patient pathway (80% for both). More than half of respondents to the online survey (60%) said the training provided by the project had increased their knowledge of AF detection and gave them sufficient knowledge to deliver the project adequately. Only half of respondents (50%) stated that AF checks themselves, as well as AF checks using MyDiagnostick, had been integrated into routine practice at their workplace.

Healthcare professionals were asked about any challenges they had in delivering the AF detection service using the MyDiagnostick device. Seven of the survey's respondents mentioned IT problems. These ranged from technical issues with downloading and installation of the software onto local computers, occasional problems with reliability of readings uploaded from the device to a computer, and the lengthy time it took for some staff to get used to using the new technology. Other challenges included the delay to receiving the device at the beginning of the project, one single device per surgery meant it was sometimes impractical to locate it when needed, and another respondent stated time constraints within an appointment was challenging.

"As a PCN, it took us a while to agree on how they would be used in the practice. It can take a while for staff to get used to new technology!"

Respondents were also asked about any opportunities that arose when delivering the service using the MyDiagnostick device. Several people mentioned positive remarks relating to patient care: for example, enhancing health checks, ease of explaining readings using the graph produced by the software, and using the device on home visits being useful.

"Patients felt that they were being investigated thoroughly, it has helped with certain consults."

HCP focus group

Some of the issues asked about in the questionnaire were explored further in a focus group. Three pharmacists, participated in the focus group. They worked across practices in Bromley and Southwark and were involved in all stages of the project, from the initial pitch to operational rollout and as an end user.

Focus group participants were asked an introductory question about their experience delivering the project and how it was implemented at their practice. There was no agreed delivery method across practices. Indeed, it was put forward as an offer to practices rather than prescribed as mandatory. In another PCN, practices were encouraged to use the device opportunistically rather than within specific clinics (e.g. flu clinics). There were challenges around access to necessary software, which caused delays. These were resolved by working directly with the MyDiagnostick team at Numed. The timeline was challenging with training taking place in February, followed by significant delays with delivery of devices through to September.

In response to a question on detection of possible AF in any patients, one participant recalled practices had reported 'red lights', and noted it was important for teams to understand the pathway in these cases. Another participant mentioned some GP feedback about benefits of the device when used with the right patient cohorts. The third participant added: "One GP used the device and had a red light, which another GP manually checked and confirmed an irregular pulse, [and] planned to go for an ECG. All other patients have had green lights".

Discussion turned to participants' thoughts on the education/training provided throughout the project. Feedback was very positive, with one person stating the clinical webinars and training resources were a good reminder of diagnosis and treatment of AF; another person saying the support webinars [Communities of Practice] were useful to compare experiences and learnings across SEL. One participant added that the recorded webinars were useful but additional in-person practical support may have increased uptake, and to embed AF checks into practice, more regular communication is needed (e.g. in local neighbourhood meetings). There was a discussion on how peer-to-peer learning within practices was highly useful. For example, senior clinicians comfortable with using the device sharing their experience with other clinicians.

Focus group participants' thoughts on the impact of the intervention on their patients was discussed. "One patient said that they had never experienced anything like it in their life, in terms of management of their health condition and felt someone was looking after them." Overall, it was agreed among focus group participants that staff at primary care practices had reported positive feedback from patients. Patients appreciated in-person consultations when these occurred, and patients reported they felt cared for. Some patients were interested in using the devices, and this greatly supported engagement. The device was also easy to use for most, though there were dexterity issues in some older patients.

The final question considered anything else participants wanted to share about delivering the project. Responses relating to enablers of uptake included:

- Working with clinical leads to embed AF checks
- Taking a multiprofessional team approach
- Providing examples of successful implementation
- Financial benefits
- Providing additional devices for larger practices
- Workforce planning, such as consideration of who will use the device and creating opportunities for upskilling staff
- Opportunistic approaches to AF checks
- Participants also raised some key challenges:
- Ensuring checks do not impact on current time constraints when undertaking opportunistic screening
- Recognition that the majority of consultations are now virtual, thus limiting use of the device for some consultations

"Some suggestion of other staff like nurses/HCAs using devices opportunistically, which would require working with nursing leads to embed into practice. Also, could be used as part of routine blood pressure, diabetes reviews but would need to reassure that use of the device would not add additional time to appointments, due to time constraints already present."

Discussion and Recommendations

Discussion

SEL ICB acquired 247 MyDiagnostick devices and these were delivered by Numed to participating practices in 34 of 36 PCNs and more than a dozen community sites across all 6 boroughs of SEL. Pre-project planning estimated a target of 2,964 patients having a check for AF using MyDiagnostick (equating to 1 patient per site per week for 12 weeks). Although this target was not close to being reached, due to a number of factors disrupting implementation of the project, a considerable amount of learning has emerged. A discussion of the impact of the intervention will be considered first, followed by views of a small number of HCPs on delivery of the project. Recommendations arising from this information will then be presented.

A total of 864 patients had their heart rhythm checked using a MyDiagnostick device over the course of the project and there were 42 abnormal heart rhythms detected, giving a 4.9% detection rate. This is in line with research [9, 10] which found that for every 100 people that have their heart rhythm checked there will be 4 abnormal results. Of the patients with an abnormal heart rhythm for whom we have data on age and gender, the majority were male (60.6%) and aged over 60 years (87.9%). It is known that at least 9 patients were referred for further investigation (21.4%). At least two of those patients were subsequently diagnosed with AF and at least one of them started taking anticoagulant treatment (see patient case studies 1 and 2). Whether any of the other patients were diagnosed with AF is not known at the time of writing this report (due to delays in commencement of the project at sites, the timing of the data coming in for analysis and the deadline of completion of this report). However, it is of note that these patients may not have otherwise been picked up were it not for this project.

In terms of assessing what worked well, there were highly favourable responses overall on the HCP's online questionnaire to their patients finding the MyDiagnostick device easy to use, their own confidence with using the device with patients and their knowledge of the AF pathway. These positive responses were also reflected in the focus group discussion, where it was agreed that patients found the device easy to use and they reported feeling cared for when having their heart rhythm checked. Education and training to support HCPs with project delivery was well received. Some comments from the focus group mentioned this could have been enhanced by more practical face to face support or via on-site senior clinicians mentoring junior staff.

There were mixed responses regarding whether the project had changed routine practice for AF detection. Although examples of how the project was being implemented at some sites were presented and discussed at the Communities of Practice webinars, there were calls for more support along these lines. In particular, more examples of good practice that could be integrated into routine working were requested.

There were many challenges encountered throughout this project and, arising from them, useful learning. Implementation of this project suffered immensely from delays encountered after the project launch in February 2024. The time it took for the DPIA to be approved took longer than anticipated. The lengthier process was due to a restructure within the ICB with the responsible officer managing this project's DPIA leaving the organisation. Additionally, SEL ICB's clinical lead on this project also left the organisation at this time. Further delays were encountered due to a shortage of MyDiagnostick devices in the UK. The UK's distributor waited much longer than expected for arrival of the devices. The devices arrived in batches so distribution to sites across southeast London was staggered, with most sites not receiving a device until September 2024. The gap between project launch and arrival of the device at some sites was as long as 7 months. Although attendance at the first 2 webinars was high, it is possible that knowledge and motivation of the project waned considerably over the interim period while staff waited for the device to arrive on site. Busy primary care practices and turnover of staff within some sites compounded these issues further.

A common theme arising from feedback from HCPs was problems with IT. Problems included difficulty accessing the software, the length of time it took to rollout the software onto primary care computers, software being loaded

onto only 1 computer within a practice and USB memory sticks used with the device being blocked by NHS computer systems. One or more of these issues were experienced by a large number of practices which meant some sites did not get started with the project by the date at which data for the evaluation was requested. This is reflected in the overall low participation rate among sites of 25.2%.

Despite the challenges to implementing the project as intended, the project was considered acceptable and feasible by some HCPs in primary care settings. It was also successful in detecting at least one previously undiagnosed case of AF and possibly others beyond the timeframe of this evaluation.

Recommendations

Based on the findings from this evaluation, the following recommendations are suggested on ways to improve rollout of new technology such as a device to detect AF:

- Start with a small number of practices and implement a pilot with them first, to identify and address key challenges in project delivery as early as possible, and before rolling it out further.
- Although ways to mitigate the governance and IT issues can be difficult to anticipate, work closely with IT staff before, during and after device rollout. Agree a timeframe for software to be uploaded onto local systems.
- Ensure the project timeline allows for at least 3-4 months for set-up before starting education sessions and any tech-related training on how to use the device.
- As some PCNs may have different priorities which may not necessarily align with ICB priorities, include time in the project's development phase to gain buy-in from senior leadership, as well as frontline staff who will be responsible for implementing the project.
- Provide clear examples of how to get started with using the device with patients (e.g. in a vaccination clinic), or how to opportunistically introduce the device into a consultation.
- Work with local teams to support buddying/ mentoring/ knowledge sharing among clinicians to increase chances of project sustainability and ongoing use of the device in surgeries at the end of the project.
- Encourage discussion at team meetings on ways to integrate AF detection using the device into routine practice.

References

- 1. NICE Guidance, NG196, Atrial Fibrillation: Diagnosis and Management, June 2021. https://www.nice.org.uk/guidance/ng196
- 2. Lloyd-Jones, DM, et al. Lifetime risk of developing atrial fibrillation: The Framingham Heart Study, NIH, 2004, 110(9): 1042-6. https://pubmed.ncbi.nlm.nih.gov/15313941/
- 3. www.longtermplan.nhs.uk/wp-content/uploads/2019/08/nhs-long-term-plan-version-1.2.pdf
- 4. AF Toolkit, https://aftoolkit.co.uk/af-data/af-data-tool/
- 5. CVDPREVENT dashboard, September 2024. data.cvdprevent.nhs.uk/insights?period=20&level=7&area=8059&group=2
- 6. www.mydiagnostick.com/about-the-mydiagnostick
- 7. www.selondonics.org/wp-content/uploads/dlm uploads/CESEL-AF-guide-FINAL-1.1-April-2024.pdf
- 8. <u>www.healthinnovationnetwork.com/wp-content/uploads/2024/08/AF-detection-project-SOP-v6.1-Aug-2024-FINAL .pdf</u>
- 9. Savickas, V., Stewart, AJ, et al. Opportunistic screening for atrial fibrillation by clinical pharmacists in UK general practice during the influenza vaccination season: A cross-sectional feasibility study, PLOS medicine, July 2020. https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1003197
- 10. Wahab, A., Nadarajah, R. and Gale, CP. Screening for atrial fibrillation: A narrative review, The British Journal of Cardiology, 2025;32:37-40. 10.5837/bjc.2025.013

Appendix

Healthcare Professionals' Questionnaire

Atrial Fibrillation Detection using MyDiagnostick in South East London

The Health Innovation Network South London has been commissioned by South East London Integrated Care System to evaluate the Atrial Fibrillation (AF) detection in primary and community care settings' project.

We are interested in hearing about your experience of taking part in this project. The survey will take about 5 minutes to complete. The survey is anonymous and confidential.

Completing the survey is voluntary and you will not be affected if you choose not to complete it. By completing it you are agreeing for the Health Innovation Network, an independent NHS organisation to collect, store and use the information that you provide. The Health Innovation Network will do so in a way that ensures your confidentiality and complies with the relevant General Data Protection Regulation (GDPR) and other data protection laws. Please click *next* to continue.

- 1. In which London borough is your PCN/community service located? [Drop down menu with 6 boroughs listed]
- 2. What is the name of the PCN in which you work? [Open dialogue box]

Please indicate the extent to which you agree or disagree with the following statements about the project.

	Strongly disagree (1)	Somewhat disagree (2)	Neither agree nor disagree (3)	Somewhat agree (4)	Strongly agree (5)
3. Patients found the MyDiagn ostick device easy to use			0	0 0	0
4. I am confiden t with how to use MyDiagn ostick to detect AF	0		0	0 0	0
5. I understa nd the patient pathway when AF	0		0	0 0	0

	is detected using MyDiagn ostick					
6.	Training on AF during the project increase d my knowled ge of AF detectio n	0	0	0	0	0
7.	webinar s & resource s on the use of MyDiagn ostick gave me sufficient knowled ge to deliver the project adequat ely	•	•	0		0
,	8. AF checks have been integrate d into routine practice	0	0	0	0	0
	9. AF checks using MyDiagn ostick have been integrate d into routine practice	0	0	0	0	0

- 10. Please tell us about any challenges you had in delivering the AF detection service using the MyDiagnostick device. This could be challenges relating to patient use, reading the device, the care pathway, IT or other issues. [Open dialogue box]
- 11. Please tell us about any opportunities that arose when delivering the service using the MyDiagnostick device. This could be opportunities relating to patient use, efficiencies, the care pathway, IT or other opportunities. [Open dialogue box]
- 12. Is there anything else you would like to tell us about the AF detection project? [Open dialogue box]

As part of the evaluation, the HIN would like to further explore some of the issues raised in this survey in a focus group. The focus group will be held on MS Teams and last no longer than 50 minutes. If you are interested in taking part, please email rodwatson@nhs.net by 28 February 2025.

Thank you very much for completing the survey.

Patient Case Studies

Patient case study: Five Elms PCN, Bromley

BACKGROUND

 $\underline{76}$ year old male patient was booked in for medication review with clinical pharmacist on 13^{th} Feb.

WORK UNDERTAKEN

- During the consultation, AF reading was abnormal after using MyDiagnostick. The patient also reported palpitations after waking up in the morning.
- The patient has been referred to do 12 lead ECG after discussion with duty doctor on 13th Feb.
- 12 lead ECG was undertaken by nurse on 24th Feb showed abnormal ECG: Atrial Fibrillation/ Atrial Flutter.
- The patient was booked in to see the doctor on 2nd March, AF has been diagnosed. GP referred the patient to community anticoagulation clinic and urgent blood test.
- The patient was seen by anticoagulation clinic on 18th March and DOAC (Rivaroxaban) has been started.

KEY FINDINGS & LEARNING POINTS

- MyDiagnostick is easy to use during a medication review or hypertension review.
- Effective multidisciplinary coordination among GP, clinical pharmacist, nurse, admin team and anticoagulation team led to a swift diagnosis and treatment decision.

1

Patient case study: Bromley Homeless Health Project

BACKGROUND

- <u>84 year old</u> man. Homeless, sleeping in an allotment shed for the past 20 years. He said that he has NEVER seen a health care professional and never been to hospital.
- He did not have an NHS number or NI number.

WORK UNDERTAKEN

- Agreed to see myself Nurse Practitioner and Bromley
 Homeless Health Team. He believed that nothing was wrong
 with him, and he was fit as a fiddle.
- BP 103/77
- Pulse 99 very erratic and irregular
- MyDiagnostick device indicated possible AF detection
- Declined hospital assessment

KEY FINDINGS & LEARNING POINTS

- He had capacity to make decisions and understand that I was concerned about his heart.
- When we finally (after 1 month) got him an NHS number we were able to check his bloods to look at his heart and rechecked his MyDiagnostick reading.
- It was good that I could show him the reading from the MyDiagnostick to help him understand what was happening with his heart.
- He has declined all medication and does not believe that there
 is a medical problem but because I could physically show him
 the reading, he agreed for a full ECG which confirmed AF.
- By having the ECG I was able to explain AF and was able to advise him of the problems and risks that surround the condition. This meant that he had all the information and was medically informed to be able to decide as to whether he would accept a referral to secondary care or not.

2

Patient case study: Bromley Homeless Health Project

BACKGROUND

- <u>48 year old</u> man came into the <u>service</u> and he had been rough sleeping for some time.
- Denied any health issues.
- Denied taking any medication.

WORK UNDERTAKEN

- Initial observations and general health assessment done.
- MyDiagnostick device used and was 'abnormal' reading.
- Went through the reading with the patient and he said he might be on heart medication but has not taken it for a very long time.

KEY FINDINGS & LEARNING POINTS

- Patient <u>actually had</u> heart failure and had other issues as well. If I had not had the MyDiagnostick in my clinic (we do not have an ECG machine) then we may not have picked up his medical history and he would have been off his medication for longer.
- Patients like the immediate reading, the fact that they can see a picture of the reading and it is simple enough to explain to them as well.
- It gives them a better understanding of the reason WHY I am sending them for further tests.

Health Innovation Network South London

3